
Lesson 5
Debugging

Code Jumper Curriculum: Lessons

Lesson 5
Debugging

American Printing House for the Blind

Code Jumper Curriculum: Lessons
Copyright © 2020 American Printing House for the Blind
All rights reserved. No part of this publication may be reproduced,
stored in retrieval system, or transmitted in any form or by any
means, except as expressly permitted under copyright law, without
written permission of the publisher.

Published by American Printing House for the Blind
1839 Frankfort Avenue, Louisville, KY 40206
www.aph.org | info@aph.org

mailto:info@aph.org
www.aph.org

OVERVIEW
LESSON OBJECTIVES
Students will:

• Understand the concept of a bug in computer programming
• Identify and fix simple bugs in their own programs

EXPECTED OUTCOMES
Students will:

• All students: Identify simple bugs in existing programs
• Most students: Identify and fix simple bugs in existing

programs
• Some students: Identify and fix bugs in existing programs

and explain their process for correcting the error in the
program

LESSON PLAN STRUCTURE
• Unplugged Activity
• Guided Code Jumper Activity
• Exploration
• Standards and Check for Understanding

RESOURCES
• Code Jumper Tutorial Videos

• Code Jumper App: https://www.youtube.com/
watch?v=vg72YPz6CWY

• The Hub: https://www.youtube.com/
watch?v=KGb51PW9zJQ&lis=

• Play and Pause Pod: https://www.youtube.com/
watch?v=446jCw8qcDI&t=

• Code Cards

3

https://www.youtube.com/watch?v=vg72YPz6CWY
https://www.youtube.com/watch?v=vg72YPz6CWY
https://www.youtube.com/watch?v=KGb51PW9zJQ&lis=
https://www.youtube.com/watch?v=KGb51PW9zJQ&lis=
https://www.youtube.com/watch?v=446jCw8qcDI&t
https://www.youtube.com/watch?v=446jCw8qcDI&t

KEY VOCABULARY
• Bug: An error or problem within a computer program.
• Debugging: The process of finding and fixing bugs (or

errors) in computer programs.
• Software Engineer: Engineers who write computer

programs for different types of software.

MATERIALS
• Sample program set up and run by the teacher: Twinkle,

Twinkle with an Error
• Sound Set: MIDI Instruments and then Piano at Thread 1:
THREAD 1 Piano

PLAY C5 for 1/2 a beat

PLAY C5 for 1/2 a beat

PLAY G5 for 1/2 a beat

PLAY F5 for 1/2 a beat

PLAY A5 for 1/2 a beat

PLAY A5 for 1/2 a beat

PLAY G5 for 1/2 a beat

END THREAD

UNPLUGGED ACTIVITY
OBJECTIVE
Introduce the concept of programming bugs and learn how to
identify the programming error in order to fix it and make sure the
program runs smoothly.

VOCABULARY
Bug: An error or problem within a computer program.

4

Debugging: The process of finding and fixing bugs (or errors) in
computer programs.

Software Engineer: Engineers who write computer programs for
different types of software.

MATERIALS
• Five sets of Debugging Cards containing five cards each:

• Each set of cards will contain four correct math problems
and one incorrect problem

• Math problems should be relatively easy for students to
solve and can be tailored to the skill level of the group

• See Debugging Cards at the end of the lesson

INSTRUCTION
1. Divide students into groups of three to five and have them

select one group member to hold their group’s stack of
Debugging Cards.

2. Have the card holder lay out the Debugging Cards in a line
next to each other, from left to right.

3. Once all groups have their cards lined up on a desk/table,
explain that one of the cards contains a bug—that is, an
error—and review with them that debugging is the process
of finding and fixing bugs in computer programs

4. Explain to students that they will start with the first card on
the far left and the goal is to determine if the card contains
a bug. All group members must agree that the card is
correct, and one group member must be able to explain their
thinking.

5. Once the group agrees that the card is correct, continue the
process with the next card in the line to determine if the
card is correct or has a bug.

a. If students identify the problem incorrectly, ask them if
they are sure and encourage them to solve the problem
without relying on the fact that the card is correct. 5

6. Have each group continue the process for each card on the
desk/table.

7. When the students reach the card that is incorrect, ask them
what is wrong with the problem and then have them discuss
with their group the change that needs to be made for the
card to be correct. Students will need to be able to explain
their thinking as a group.

8. When each group of students completes their card set,
review with the entire class how, in their small groups, they
were able to debug a sequence of instructions.

9. Explain that the process they participated in is similar to
what software engineers go through when debugging a
computer program. Explain that software engineers typically
work with a team, and when something in the program is
not working correctly they systematically go through the
program and determine where the error is and problem-
solve how to fix it.

CLOSURE
10. Explain that in Code Jumper they will experience bugs in

their programming and will have to work to debug the
programming sequence in order for it to work correctly.

GUIDED ACTIVITY:
DEBUGGING CODE JUMPER
In this activity, students will analyze code for bugs/errors and will
learn how to identify and correct a bug.

OBJECTIVE
• Listen to a sample program and identify a bug
• Correct the bug in the program

6

MATERIALS
Debugging Code Card for Twinkle, Twinkle with an Error:

THREAD 1 Twinkle, Twinkle

PLAY Twinkle 1 for 1.5 times speed

PLAY Twinkle 2 for 1.5 times speed

PLAY Star for 1.5 times speed

PLAY Little for 1.5 times speed

END THREAD

[Figure Caption:] At the top is a screenshot of the Code Jumper
app showing a program that has one thread. Under THREAD 1
Twinkle, Twinkle, the commands read, PLAY Twinkle 1 for 1.5
times speed, PLAY Twinkle 2 for 1.5 times speed, PLAY Star for
1.5 times speed, PLAY Little for 1.5 times speed; the commands
are followed by End Thread. Below this screenshot is a photo of a
Code Jumper program, with four Play pods connected to the Hub
at Port 1.

7

Code Card for Twinkle, Twinkle Without an Error:

THREAD 1 Twinkle, Twinkle

PLAY Twinkle 1 for 1.5 times speed

PLAY Twinkle 2 for 1.5 times speed

PLAY Little for 1.5 times speed

PLAY Star for 1.5 times speed

END THREAD

[Figure Caption:] At the top is a screenshot of the Code Jumper
app showing a program that has one thread. Under THREAD 1
Twinkle, Twinkle, the commands read, PLAY Twinkle 1 for 1.5
times speed, PLAY Twinkle 2 for 1.5 times speed, PLAY Little for
1.5 times speed, PLAY Star for 1.5 times speed; the commands
are followed by END THREAD. Below this screenshot is a photo of
a Code Jumper program, with four Play pods connected to the Hub
at Port 1.

8

INSTRUCTION
1. Set up a program like Twinkle, Twinkle. Make sure that the

program is something that the students are familiar with
so they can easily spot an error. If Twinkle, Twinkle is not
appropriate for your specific classroom, choose a different
program or add in a custom Sound Set. Create an error in
the program and run it so that all students can hear.

2. Run the program on normal speed and ask students to listen
carefully. Oh no! Something is not right! Ask students what
they think has happened.

3. Ask students: Is something wrong in the program? What do
we call it when the Code Jumper program has a problem?
(Answer: A bug—that is, an error.)

4. Ask students: How do we fix the problem? Debugging is
the process of finding and fixing bugs in computer programs.
Talk as a group as to what it means to fix an error in their
program. Have students write the definitions of bug and
debugging in their Computer Science Journals.

a. Bug: An error in a computer program.

b. Debugging: The process of finding and fixing bugs (or
errors) in computer programs.

5. Run the program again and ask students to listen very
carefully to the program Twinkle, Twinkle with an Error
again.

6. As a class, sing the song, poem, etc. as a refresher of what
the program should be running.

7. Ask students: Can you identify the error? Which part of the
song do you think is wrong? (Expected response: Star and
Little are reversed.)

8. Ask students: Who do you think fixes errors on the
computer programs that you use every day? Correct the
error and play again.

9

9. Introduce the term software engineer. These are people
who write computer programs. Have the students write
the definition of Software Engineer in their Computer
Science Journals.

10. Software Engineer: A software engineer is a person who
applies the principles of software engineering to the design,
development, maintenance, testing, and evaluation of
computer software. (A simpler definition would be people
who write computer programs.)

11. Ask students: What ways do you think a Code Jumper
Program could be broken? (Expected responses: The sound
or duration parameters could be wrong, the Pod could be
plugged into the wrong thread, the wrong Sound Sets could
be selected, etc.)

12. Give each group the Code Card below in step 15 or one that
is more appropriate for the specific class. Ask the students
to create the code exactly as it is written on the Code Card.
In this activity, students will be looking for a bug. First, they
will need to listen to all the sounds and figure out which one
does not belong in the group. The sound that does not fit in
the group is the bug and needs to be replaced with a sound
that is also an animal.

13. Ask students to create the code and listen carefully and
discuss in their small groups what category of sound it is.
Ask the students to trace the code while they are listening.
Have students write down in their Computer Science
Journals the sounds that they hear, what the error is, and
which Pod has the error.

14. Once the error has been determined, students can then find
the correct sound to replace the bug with and then play it for
the teacher in the correct order. Tip for Teachers! Create the
code correctly first and then add in the bug when creating the
Code Cards. Errors can be added to the program by making
some changes to the sound and duration parameters.

10

15. In the program below, the pattern is that all the sounds are
animal sounds. The error is in Play pod 3, which is Thunder
and should be Birds. (Thunder is not an animal sound so it
does not fit this category.)

Program with an error:

Thread 1 Nature

Play Sea Gulls, speed: 1 times

Play Crickets, speed: 1 times

Play Thunder, speed: 1 times

Play Frogs, speed: 1 times

End Thread

Program without an error:

Thread 1 Nature

Play Sea Gulls, speed: 1 times

Play Crickets, speed: 1 times

Play Birds, speed: 1 times

Play Frogs, speed: 1 times

End Thread

16. Ask students to recreate the code EXACTLY as it is on the
Code Card. Once the code is complete, have the students
run the code and listen carefully.

By tracing the code, students should determine which line of
code or Pod has the error.

17. Ask students to identify the error on the Code Card. If this is
done in braille, ask the students to mark the incorrect line of
code with a tactile sticker or wax stick.

18. Students should then correct the code in Code Jumper and

11

run the code again. On the Code Card, ask students to write
the correct line of code from the Sound Set or duration. If
braille is being used, ask the student to write the correct
line of code on a separate piece of paper and attach it to the
original Code Card.

CLOSURE
1. Ask students to explain what a bug is and to give an

example of one they found in one of this lesson’s programs.

2. Ask students to explain what debugging is and to give an
example of how they debugged their programs.

EXPLORATION
OVERVIEW
In this activity, students will create a program and then introduce
a bug for another group to find and fix.

MATERIALS

• Code Jumper kit
• Computer Science Journal

INSTRUCTION
1. Ask students to create a program. It may be one from the

Sample Sounds Sound Set or from a custom Sound Set.

2. Have students create the Code Card for their program in
their Computer Science Journals.

3. Ask students to put a bug in the program and indicate where
it is in their Computer Science Journals.

4. Have students switch groups and try to find the bug in
the other programs. Instruct students to record in their
Computer Science Journals where the bug is. Which Pod was
incorrect? For example, Play pod 3 out of 6 Pods.

12

5. Ask students to regroup and explain the discovery to the
creator of the program.

CLOSURE
Ask students to reflect on strategies they used to find the bug and
then record these strategies in their Computer Science Journals.

STANDARDS AND CHECK FOR
UNDERSTANDING
CSTA K-12 COMPUTER SCIENCE STANDARDS*

• 1A-AP-14: Debug (identify and fix) errors in an algorithm or
program that includes sequences and simple loops.

• 1B-CS-03: Determine potential solutions to solve
simple hardware and software problems using common
troubleshooting strategies.

• 1B-AP-15: Test and debug (identify and fix errors) a
program or algorithm to ensure it runs as intended.

NATIONAL CURRICULUM OF ENGLAND*:
Key Stage 1:

• Understand what algorithms are; how they are implemented
as programs on digital devices; and that programs execute
by following precise and unambiguous instructions

• Create and debug simple programs
• Use logical reasoning to predict the behavior of simple

programs
• Use technology purposefully to create, organize, store,

manipulate and retrieve digital content
• Recognize common uses of information technology beyond

school
• Use technology safely and respectfully, keeping personal

13

information private; identify where to go for help and
support when they have concerns about content or contact
on the internet or other online technologies

Key Stage 2:

• Design, write and debug programs that accomplish specific
goals, including controlling or simulating physical systems;
solve problems by decomposing them into smaller parts

• Use sequence, selection, and repetition in programs; work
with variables and various forms of input and output

• Use logical reasoning to explain how some simple algorithms
work and to detect and correct errors in algorithms and
programs

• Use search technologies effectively, appreciate how results
are selected and ranked, and be discerning in evaluating
digital content

• Use technology safely, respectfully and responsibly;
recognize acceptable/unacceptable behavior; identify a
range of ways to report concerns about content and contact

CLOSING ACTIVITIES AND
CHECK FOR UNDERSTANDING
Have students identify situations in their school where they have
run into a problem with a series of steps that they had to follow.
Discuss how they identified that it was a problem and have
students write what steps they took to solve the problem in their
Computer Science Journals.

Possible Examples:

• Working on math problems
• Writing a paper
• Doing a science experiment

14

Check for Understanding Completed

Student can identify an error/bug in a sequence
of actions.

Yes / No

Student can explain what a bug is. Yes / No

Student can describe the steps they would take to
identify a bug.

Yes / No

* Computer Science Teachers Association (2017). CSTA K-12
Computer Science Standards, Revised 2017. Retrieved from
http://www.csteachers.org/standards

* Education, Department for. “National Curriculum in England:
Computing Programmes of Study.” GOV.UK, 11 Sept. 2013,
www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study

CODE CARDS
Debugging Code Card for Twinkle, Twinkle with an Error for Guided
Activity

THREAD 1 Twinkle, Twinkle

PLAY Twinkle 1 for 1.5 times speed

PLAY Twinkle 2 for 1.5 times speed

PLAY Star for 1.5 times speed

PLAY Little for 1.5 times speed

END THREAD

15

http://www.csteachers.org/standards
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study

[Figure Caption:] At the top is a screenshot of the Code Jumper
app showing a program that has one thread. Under THREAD 1
Twinkle, Twinkle, the commands read, PLAY Twinkle 1 for 1.5
times speed, PLAY Twinkle 2 for 1.5 times speed, PLAY Star for
1.5 times speed, PLAY Little for 1.5 times speed; the commands
are followed by End Thread. Below this screenshot is a photo of a
Code Jumper program, with four Play pods connected to the Hub
at Port 1.

CODE CARD FOR TWINKLE, TWINKLE WITHOUT AN ERROR FOR
GUIDED ACTIVITY

THREAD 1 Twinkle, Twinkle

PLAY Twinkle 1 for 1.5 times speed

PLAY Twinkle 2 for 1.5 times speed

PLAY Little for 1.5 times speed

PLAY Star for 1.5 times speed

END THREAD

16

[Figure Caption:] At the top is a screenshot of the Code Jumper
app showing a program that has one thread. Under THREAD 1
Twinkle, Twinkle, the commands read, PLAY Twinkle 1 for 1.5
times speed, PLAY Twinkle 2 for 1.5 times speed, PLAY Little for
1.5 times speed, PLAY Star for 1.5 times speed; the commands
are followed by END THREAD. Below this screenshot is a photo of
a Code Jumper program, with four Play pods connected to the Hub
at Port 1.

17

 DEBUGGING PRACTICE SETS
Debugging Practice Set #1:

7 – 4 = 3

6 + 2 = 8

18

Debugging Practice Set #1:

9 + 2 = 13

5 - 1 = 4

Debugging Practice Set #1:

8 + 2 = 10

19

Debugging Practice Set #2:

9 – 4 = 5

2 + 10 = 12

20

Debugging Practice Set #2:

4 + 3 = 7

2 - 1 = 0

Debugging Practice Set #2:

9 + 3 = 12

21

Debugging Practice Set #3:

8 – 4 = 4

1 + 9 = 10

22

Debugging Practice Set #3:

7 + 5 = 12

8 - 1 = 6

Debugging Practice Set #3:

9 + 0 = 9

23

Debugging Practice Set #4:

10 – 4 = 6

3 + 2 = 5

24

Debugging Practice Set #4:

5 + 4 = 8

9 - 3 = 6

Debugging Practice Set #4:

4 + 3 = 7

25

Debugging Practice Set #5:

3 – 0 = 3

6 + 6 = 12

26

Debugging Practice Set #5:

8 + 1 = 9

12 - 6 = 6

Debugging Practice Set #5:

4 + 7 = 13

27

TEXT ONLY FOR COMPLETE SET
OF DEBUGGING CARDS
Practice Set #1:

7-4=3

6+2=8

9+2=13

5-1=4

8+2=10

Practice Set #2

9-4=5

2+10=12

4+3=7

2-1=0

9+3=12

Practice Set #3

8-4=4

1+9=10

7+5=12

8-1+6

9+0=9

28

Practice Set #4

10-4=6

3+2=5

5+4=8

9-3=6

4+3=7

Practice Set #5

3-0=3

6+6=12

8+1=9

12-6=6

4+7=13

29

Debugging Practice Set #1: (Blank)

30

Debugging Practice Set #1: (Blank)

Debugging Practice Set #1: (Blank)

31

Debugging Practice Set #2: (Blank)

32

Debugging Practice Set #2: (Blank)

Debugging Practice Set #2: (Blank)

33

Debugging Practice Set #3: (Blank)

34

Debugging Practice Set #3: (Blank)

Debugging Practice Set #3: (Blank)

35

Debugging Practice Set #4: (Blank)

36

Debugging Practice Set #4: (Blank)

Debugging Practice Set #4: (Blank)

37

Debugging Practice Set #5: (Blank)

38

Debugging Practice Set #5: (Blank)

Debugging Practice Set #5: (Blank)

39

For more resources, visit codejumper.com

Copyright © 2020

https://codejumper.com
http://www.aph.org
mailto:info@aph.org

	Lesson 5 Debugging
	Code Jumper Curriculum: Lessons
	OVERVIEW
	UNPLUGGED ACTIVITY
	GUIDED ACTIVITY: DEBUGGING CODE JUMPER
	EXPLORATION
	STANDARDS AND CHECK FOR UNDERSTANDING
	CLOSING ACTIVITIES AND CHECK FOR UNDERSTANDING
	CODE CARDS
	DEBUGGING PRACTICE SETS
	TEXT ONLY FOR COMPLETE SET OF DEBUGGING CARDS

	p30_1:
	p31_1:
	p30_2:
	p31_2:
	p31_3:
	p32_1:
	p32_2:
	p33_1:
	p33_2:
	p33_3:
	p34_1:
	p34_2:
	p35_1:
	p35_2:
	p35_3:
	p36_1:
	p36_2:
	p37_1:
	p37_2:
	p37_3:
	p38_1:
	p38_2:
	p39_1:
	p39_2:
	p39_3:

